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Executive Summary 
Increasing use of building monitoring systems creates an opportunity for data-driven approaches in 
the entire built environment. MODERATE provides an open platform where data owners can openly 
share anonymized data. To enable access to heterogenous data sources on buildings the project 
standard ontologies are used to describe the metadata of each dataset. Data enhancement methods 
are used to increase the value of datasets and make them useful for a variety of tools to increase the 
understanding of the data. In this deliverable, we present the possible methodologies for preparing 
and enhancing data at on different levels of aggregation. Further we show the standard ontology used 
to effectively store and label various building data to make the data interoperable between various 
tools within the MODERATE platform as well as facilitating data exchange and data sharing. We discuss 
the aggregation and disaggregation of building data to building stock and vice versa. 

Introduction 

Data collected in work package 3 (WP3)3 will be further used in WP4 where methods are applied to 
enhance the data and finally create synthetic datasets, masking all personal information making data 
GDPR compliant. Provided building data is often incomplete or lacking descriptive metadata 
information, due to privacy constraints or because the data can not be monitored. One specific 
example is monitored electricity consumption data. A prime example for this would be smart meter 
data where it is not possible to monitor behavioral data and enrich the consumption data with this 
kind of information. Additional data, such as household size or number of inhabitants could be 
monitored, but is almost never shared due to privacy concerns. To better understand building data, 
we develop data enhancement methods to label and categorize certain data in order to create realistic 
synthetic data as a next step. Within this deliverable the methods applied to enhance data collected 
from WP3 will be described concerning building stock data and measured energy consumption 
profiles. A special focus is put on ensuring the consistency of the synthetic indicators with each other 
and with the technical data used for these end-uses. E.g., the indicator of the specific energy 
consumption for a certain end-use should be consistent with technology data being applied in this 
type of end-use.  

This deliverable is structure as follow:  
• Chapter 1 presents the standard ontology adopted. 
• Chapter 2 provides an overview of existing literature and methods relevant for preparing 

information on load profiles on building level for labeling.  
• Chapter 3 describes the methodologies for aggregating building data on different levels. 
• Chapter 4 describes the link of this work package to other work packages in the Moderate 

project.  
  

 
3 WP3 deals with data collection from various sources such as public databases, literature, satellite images etc. 
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1 Standard Ontology  
Data take on a value when they are correctly described (metadata). In the era of big data, the main 
problem is interoperability between different datasets. In fact, the disaggregation of information or 
the incorrect description of it leads to its difficult use, reducing the generation of knowledge from the 
data. In the building domain, various actions have led to the realization of ontologies and semantics 
that help to better describe both the dataset and the system from which the data was acquired (e.g. 
building monitoring system, Building Management System, Technical building management, etc.). 

Such ontologies allow for an exchange of information at both the machine and human level, enabling 
easy interrogation of the dataset from which the data is to be obtained. In MODERATE, this approach 
is indispensable, both for internal data management and to facilitate a possible relationship with other 
datasets structured using the same ontologies. 

The approach with the 'brick schema' ontology is shown below, but will not be the only one as there 
are several initiatives in place such as FIWARE, NSGI-LD, Haystack, etc. These will be gradually 
evaluated within the project, providing case studies of their application as well as a detailed 
description of their use.  

1.1 Brick schema4 

Nowadays, buildings are increasingly becoming incubators of data and information. The integration of 
intelligence systems, sensor and networking (i.e. Internet of Things - IoT) in buildings is becoming more 
and more common. Even though the amount of data generated by smart buildings is growing 
exponentially, there is still no clear industry-wide standard for using, sharing and exchanging 
information in a unified way.  

Indeed, some of the day-to-day actions applied in construction, such as energy audits, optimization of 
controls or detection of faults in building systems are often slowed down by the lack of standardization 
of metadata. This makes processes prohibitively time-consuming and burdensome (from a labor point 
of view) and not reusable in other applications. This problem is generally related to the lack of 
semantic interoperability.  

The latter is defined by Pritoni et all.5 as “the capability of two or more networks, systems, devices, 
applications, or components to work together, and to exchange and readily use information securely, 
effectively, and with little or no inconvenience to the user”. On the technical side, the interoperability 
between devices is achieved using the same communication protocol, on the contrary the semantic 
layer is not defined or unambiguously defined, not allowing the development of applications that can 
be used in different buildings.  

All this shows that it is extremely important to define a univocal semantic layer, which, based on a 
standard model, allows interoperability between different services and platforms. 

The semantic model is a metadata schema that describes precisely and unambiguously the different 
elements that characterize the building and its systems. The peculiarity is that it identifies different 
entities by means of a glossary or dictionary and links them to each other using relationships. 
Ontologies establish the domain’s concepts and relationships, classes, and attributes.  

 
4 https://brickschema.org/#home 
5 Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis – energies- April 
2021 DOI: https://www.mdpi.com/1996-1073/14/7/2024 

https://brickschema.org/#home
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As written in 6 “The World Wide Web Consortium (W3C) established standards that created the 
Semantic Web, an extension of the World Wide Web aimed to make internet data machine- readable. 
Ontologies that comply with W3C standards use triples in the form of subject–predicate–object to 
encode knowledge, following the Resource Description Frame- work (RDF) data model. When multiple 
triples are put together, they form a directed multigraph. The W3C also provides a set of fundamental 
languages that can be leveraged to define ontologies using classes and properties (i.e., Resource 
Description Framework Schema or RDFS), description logics (i.e., Web Ontology Language or OWL) 
and constraints (i.e., OWL and Shapes Constraint Language or SHACL). Ontologies and Semantic Web 
technologies have experienced some adoption for internet services, providing interoperability of 
digitized data, for example, between search engines, web crawlers, and other web-based software”  

On the building domain the ontologies developed and under development are summarized in the 
following schema (see Table 1). 

Table 1: Metadata schema as resulting of review process of existing applications 

Phase of the 
Building Life 
Cycle 

Group 
Schemas  

Design and energy 
modelling Software 

• Industry Foundation Classes (IFC) 
• Green Building XML (gbXML) 
• ifcOWL  
• Tubes 
• SimModel Ontology 
• Energy-ADE 

Operations 
Sensor network, 
Internet of things 
(IoT) and smart 
homes 

• Semantic Sensor Network/Sensor, Observation, 
Sample and Actuator (SSN/SOSA) 

• Web Thing Model 

• OneM2M7 BaseOntology’s 

• One Data Model (oneDM) 
• Smart Energy Aware Systems 
• ThinkHome 
• Building Ontology for Ambient Intelligence 
• DogOnt 
• Ontology of Smart Building 
• Smart Application REFerence (SAREF) 

Operations 
Commercial building, 
automation and 
monitoring 

• Project Haystack 
• BASont 
• Haystack Tagging Ontology (HTO) 
• Brick Schema 
• Google Digital Building Ontology 
• Semantic BMS Ontology 

 
6 Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis – energies- April 
2021 DOI: https://www.mdpi.com/1996-1073/14/7/2024 
7 https://www.onem2m.org/  
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Phase of the 
Building Life 
Cycle 

Group 
Schemas  

• CTRLont 
• Green Button 
• RealEstateCore (REC) 
• Building Topology Ontology (BOT)  
• Building Automation and Control Systems (BACs) 
• Knowledge Model for City (KM4City) 
• EM-KPI Ontology  

Operations 
Grid-interactive 
efficient building 
(GEB) applications 

• Facilty Smart Grid Information Model  
• RESPOND 

Operations Occupants and 
behaviour 

• DNAs Framework (obXML) 
• Occupancy Profile (OP) Ontology 
• Onto-SB: Human Profile Ontology for Energy 

Efficiency in Smart Building 
• OnCom 

Operations Asset management 
and audits 

• Building Energy Data Exchange Specifications 
(BEDES) 

• Virtual Building Information Systems (VBIS) 
• Ontology of Property Management (OPM) 

The core concept of an ontology applied on a building domain is defined in the following table. 

Table 2: Main core concepts of building ontology 

Category Concept Proprieties Relationship to/from 

Zones and Spaces 

Space 
Function 
Floor Area 

Composed of spaces 
Adjacent spaces  

Zone Floor area 
Overlaps one or more 
spaces 
Overlaps other zones 

Building floor Orientation Composed of spaces 

Envelope Envelope element 

Type of envelope 
element(wall, roof, floor, 
window) 
Envelop characteristics 
(e.g., thermal resistance, 
storage, solar seat gain 
coefficient) 

Part of space 

Building System and 
Equipment 

System Type of system Composed of 
components 

Equipment 
Type of equipment 
Rated power draw 
Rated efficiency 

Serves zone 
Located in space 
Metered by meter 
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Category Concept Proprieties Relationship to/from 
Remaining lifespan Connected to equipment 

HVAC equipment Rated capacity  

Lighting equipment 

Rated(max.) luminous 
flux 
Minimum relative light 
output 
Rated (max.) power 
Correlated color 
temperature 
Spectral power 
distribution 
Rated Input voltage 
Rated (max.) input 
current 

Serves zone/space 
Located in space 
Metered by 
(internal/external) 
Meter Connected to 
electrical 
Junction box or other 
equipment 

Other end use Type of end-use  

Component Type of component 

Part of system 
Located in space 
Connected to 
component 

Control Devices 

Control device  Has points 

Control point 

Input/Output Type 
Physical/Virtual type 
Type of virtual point 
(setpoints, command, 
alarm) 
Unit of measure 
Control interval 

Linked to 
sensor/actuator 
Linked to time series 
data 

Control strategy Schedule Event 

Has inputs 
Has outputs 
Linked to sensor 
Linked to actuator 
Linked to time series 
data 

Sensor/Actuator 

Sensor 

Type of sensor 
Unit of measure 
Measurement Interval 
Reporting Interval 

Senses/Measures point 
Senses/Measures 
equipment 
Aggregates 
measurements 

Actuator 
Unit of measure 
Actuation interval 

Actuates point 
Actuates equipment 
Integrates/Prioritizes 
actuations 

Brick is a metadata scheme that takes from the Haystack project the use of tags to preserve the 
flexibility and ease of use of annotating metadata. Brick unlike Haystack schema places restrictions to 
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prohibit arbitrary tag combinations and relationships. For example, the unit for temperature to be 
chosen can be only Fahrenheit or Celsius or give an error if sensor and set point occurring together in 
a tag combination for a data point.  

Brick introduces the concept of tag set that group together relevant tags to represent an entity. They 
are:  

1. Points are physical or virtual entities that generate time-series data. Physical points 
include actual sensors and setpoints in a building, whereas virtual points 
encompass synthetic data streams that are the result of some process which may 
operate on other timeseries data, e.g. average floor temperature sensor.  

2. Equipment: Physical devices designed for specific tasks controlled by points 
belonging to it. E.g., light, fan, Air Handling Unit (AHU).  

3. Location: Areas in buildings with various granularities. E.g. room, floor.  
4. Resource: Physical resource or materials that are controlled by equipment and 

measured by points. An AHU controls resources such as water and air, to provide 
conditioned air to its terminal units.  

5. Together with these entities, Brick defines a minimal set of relationships that 
capture the connection between them. A Brick building model can be visualize using 
the Resource Description Framework (RDF) which represents graph-based 
knowledge as tuples of (subject, predicate, object) termed triples.  

6. Unlike the other languages for the building metadata scheme, Brick is distinguished 
for:  

7. Completeness: The current version of Brick covers the 98% of the vocabularies 
found in six buildings in different countries.  

8. Vocabulary Extensibility: The structure of Tags/TagSets allow easy extensions of 
TagSets for newly discovered domains and devices while allowing inferences of the 
unknown TagSets with Tags.  

9. Usability: Brick represents an entity as a whole instead of annotating it. It promotes 
consistent usages by different actors. Furthermore, its hierarchical TagSets 
structure allows user queries more generally applicable across different systems.  

10. Expressiveness: Brick standardizes canonical and usable relation-ships, which can 
be easily extended with further specifications.  

11. Schema Interoperability: Using RDF enables straightforward integration of Brick 
with other ontologies targeting different domains or aspects. 
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Figure 1: Example of Brick Schema 

The relationship supported by Brick and updated by Brick+ are shown in the following table:  

Table 3: Relationship and definition for brick and brick plus schema 

Relationship Definition 

hasLocation  Subject is physically located in the object entity  

feeds  Subject conveys some media to the object entity in the context of some sequential 
process  

hasPoint  Subject has a monitoring, sensing or control point given by the object entity  

hasPart  Subject is composed – logically or physically – in part by the object entity  

Measures Subject measures a quantity or substance given by the object entity  

Regulates Subject informs or performs the regulation of the substance given by the object 
entity  

hasOutputSubstance  Subject produces or exports the object entity as a product of its internal process  

hasInputSubstance Subject receives the object entity to conduct its internal process  

1.2 SAREF 

The Smart Applications REFerence (SAREF) 8  is one of the well-established Ontologies, which is 
intended to cover the various actors in the Internet of Things (IoT).  

 
8 https://saref.etsi.org 
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Figure 2: shows an overview of the SAREF. The main classes are contained in the box. The connection between each class is 

the relationship9 

SAREF4BLDG is an extension of SAREF, which is created based on the Industry Foundation Classes 
standard for building information 10 . The goal of SAREF4BLDG is intended to improve the 
interoperability among different phases of the building life cycle. The overview of SAREF4BLDG is 
depicted in Figure 3. As can be observed, saref:device is reused from SAREF. The class geo:SpatialThing 
is from the geo ontology, which proposed the conceptualization for location.  

 

 
Figure 3: General overview of the top levels of the SAREF4BLDG 

 
9  https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf 
10 https://www.etsi.org/deliver/etsi_ts/103400_103499/10341003/01.01.02_60/ts_10341003v010102p.pdf 

https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf
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2 Load profiles on building level 
In this chapter we describe the process of labeling unlabeled load profiles in order to effectively 
process them later and ultimately create synthetic load profiles. 

2.1 Data preparation 

The dataset furnished by the energy provider includes clean and high-quality data. All entries come 
with a timestamp and corresponding energy load details. To facilitate our work, we outline the 
attributes of the timestamp by extracting the subsequent features: year, month, day, day of the week, 
week number, classification of holiday or workday, and the current season. Due to changes in winter 
and summer time we have duplicate and missing values in each profile. The hour corresponding to the 
missing hour is treated as missing to ensure that records that are not consecutive are not treated as 
such. Regarding duplicated records, the most recent one is removed. Lastly, we prepared the data set 
for feature extraction by normalizing the data and making them of the same magnitude for more 
accurate calculations. We dropped days without a full day record and considered that some days and 
months are overrepresented since the dataset spans over a period of one and half years.  

Electricity consumption contains seasonal patterns, and this affects the calculation of some features, 
like the measures of central tendency. So, we normalized the data by calculating the mean 
consumption of each day and averaging it over the entire year. It is important to keep in mind if energy 
consumption shows a marked long-term trend, that may have an unwanted effect. As well, mean 
hourly consumption values for each day of the year may exhibit atypical patterns, as they may average 
out workdays with holidays or days with very different weather conditions and this can artificially 
reduce the dispersion indices. 

2.2 Feature engineering 

In the subsequent section, we will delve into the fundamental techniques of feature engineering used 
to better understand the relationships and the patterns of the energy load profiles. Feature 
engineering involves transforming raw data into a set of defined features that represent the 
characteristics of interest. In the context of energy load profiles, this means the utilization of diverse 
techniques that capture essential aspects of consumption behavior. Six key categories of feature 
engineering techniques take center stage: central tendency, dispersion, changing in hourly load, zero 
consumption, peaks and workday and holiday patterns.  
Central tendency aids in identifying shifts in consumption patterns over time, facilitating anomaly 
detection and load forecasting. Dispersion highlights the spread or variability in energy load profiles 
and assesses the stability of energy demand. Changing in hourly load underlines fluctuations between 
consecutive hours and it is a significant value for optimizing generation scheduling. 
Zero consumption identifies inactive periods or potential equipment malfunction. Peak features 
identify heightened demand, often revealing peak usage times, and encompass peak load magnitude, 
frequency, and duration. Workday vs holiday patterns involve creating features that distinguish 
consumption patterns on regular workdays, weekends, and holidays, enabling the model to capture 
usage fluctuations. 
By curating, constructing, and selecting pertinent features, we can uncover hidden patterns, capture 
inherent dependencies, and facilitate the development of robust predictive models. 
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2.2.1 Measure of central tendency 

In the context of energy load profiles, the mean and the median are both measures used to 
understand the central tendency of a set of energy consumption of load data. They provide insights 
into the typical or average level of energy consumption over a given period.  
 
Mean and median consumption on an hourly and daily basis  
The mean consumption on an hourly basis is calculated by taking the mean of all respective hours of 
each day of the whole profiles (Figure 4). We did not calculate these statistical features on normalized 
data to preserve the information on the overall consumption. Nevertheless, a comparison with 
normalized data shows a similar trend for the overall dataset.  

 
Figure 4: Mean consumption of all consumers within a dataset for every day. The trend shows an increase in 

consumption between 12 and 3 o’clock and in the evening after 8 pm. 

The mean and the median at hourly consumption shows the daily trend, whereas the daily 
consumption provides information on the consumption pattern throughout the week or the month 
(Figure 5 and Figure 6).  

 
Figure 5: Mean consumption over an average 
week. Mean consumption of all consumers 
within the dataset for every day. 

 
Figure 6: Median consumption of all hours within all weeks 
of all the data. 

 
Comparison of mean and median consumption at hourly and daily basis 
The comparison between the median and mean consumption provides additional insights, particularly 
on the peaks. The mean is sensitive to extreme values, while the median remains relatively unaffected. 
If the mean and the median are close to each other, but the median is lower than the mean, it suggests 
a positively skewed contribution with occasional high spikes in energy consumption. Figure 7.a shows 
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that most consumers have isolated peak profiles, as the median is often lower than the mean. If we 
do the same comparison for the daily mean and median (Figure 7.b) we see that the median is still 
lower for most consumers, but the difference is smaller than for the hourly data. That means the daily 
users’ consumption is not as volatile as the hourly consumption. 
 

 
12. Mean and median 

comparison at hourly level 

 
13. Mean and median 

comparison at daily level 
Figure 7: Comparison of the hourly mean and the hourly median 

At the first glance, the increase and decrease in hourly load seems to be pretty symmetric and no 
sudden changes are detected (Figure 8).  

 
Figure 8 Changes in hourly load 

Median relative increase and decrease in hourly load 
The median relative increase and decrease in hourly load is calculated by first, calculating the change 
in load from one hour to the next, and then calculating the median from the collected decrease values. 
This measure is used to understand the central tendency of how much the hourly load either increased 
or decreased during the giving time frame (Figure 9). Figure 10 shows that some profiles have quite 
distinct loads, suggesting that most probably electricity was only used during a period of holidays and 
not during the whole year. 
 



    

16 
  This project has received funding from the European Union’s Horizon Europe research and innovation programme under 

grant agreement No 101069834. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be 
held responsible for them. 

 
Figure 9 Median increase and decrease during hourly load 

 
Figure 10 Load peaks most probably related to electricity 
consumption only during a period of holidays 

 
 

2.2.2 Measure of dispersion 

The measure of dispersion provides insights into the consistency or volatility of energy usage patterns 
over a period (eg. hourly, daily etc.). It helps understand how much the energy consumption values 
deviate from the average, which can be valuable for energy planning, forecasting and management.  

 
The Pearson coefficient of variation (CVp) is the ration of the standard deviation to the mean.  
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

 
It assesses the relative variability, or dispersion, of a data set with respect to its mean, and we 
calculated for hourly and daily consumption for a better comparison of the two. The dispersion is more 
evident at the hourly level than at the daily level, suggesting that the difference of consumption is 
greater between hours than between days (Figure 11). The CVp for daily consumption is lower than 
for hourly consumption, which means that the load over days does not have as many isolated peaks 
as the load over hours.  

 
Figure 11: Mesure of dispersion at hourly and daily level. The difference of electrcity consumption is greater between hours 

than between days   
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Pearson median skewness for hourly and daily consumption 
The Pearson median skewness (Sk2) subtracts the median from the mean, multiple the difference by 
three and divides the product by the standard deviation.  
 

𝑆𝑆𝑆𝑆2 =  
3(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚)

𝑠𝑠𝑠𝑠𝑠𝑠
 

 
It assesses the distribution with respect to symmetry. The comparison of the hourly and the daily 
skewness shows a different degree of skewness, meaning that the shape of the distribution between 
days and hours is different often with opposite signs for the consumer (Figure 12). This variation in 
skewness can be used as useful information to group load profiles, possibly for better understanding 
consumption patterns.  
 

 
Figure 12: Pearson median skewness at hourly and daily level 

 

Mean, median and Pearson coefficient of variation of monthly consumption 
We first normalized the monthly consumption to 30 days to make months comparable. Then, we 
calculated the mean, the median and the Pearsons coefficient of variation for each month.  
 
Zero consumption rate 
The zero-consumption rate is the share of hours where the consumption drops to zero. Most of the 
occupants do not have zero-consumption because appliances, like fridges, internet routes, etc. 
represent constant loads. Only a few consumers have hours where their consumption drops to zero 
as shown in Figure 13 and those profiles can be clustered together.  
 

 
Figure 13: Zero consumption rate 
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2.2.3 Peaks 

Peak consumption-day of the week 
In order to identify the day of the week with the highest consumption, we calculated the average 
hourly consumption for each day and then multiplied it by 24. This approach enables us to include 
days with less than 24 hours of available data as well. 
 
Mean and median number of days with the highest consumption over the weeks 
First, we computed the day with the peak consumption. Then, we determined the average and median 
values for each week, utilizing the range of days (1-7 representing Monday to Sunday). 
 
Median day of the week with max consumption 
The median day of the week with max consumption represents the initial week's day when 
consumption surpasses more than half of the records with maximum usage. Consequently, the days 
at the center hold great significance. As depicted in Figure 14.a, Tuesday witnesses most consumers 
utilizing less than 50% of their weekly electricity demand, whereas Thursday emerges with the highest 
value due to its midweek position. To capture cyclic or periodic trends in the data, this attribute 
undergoes circular transformation using sine and cosine functions (Figure 14.b). 
 

 
a. Day of the week with 50% of 

highest energy consumption 

 
b. Circular transformation  

Figure 14: Median of the days with highest energy consumption 

Mode of the day of the week with the highest consumption  
The mode of the day of the week with the highest consumption represents the value or values that 
occur most frequently in the data set. In other words, it is the value that appears with the highest 
frequency. This value is calculated by first determining the days of each week with the highest 
consumption. Then the mode of these days for all weeks is calculated. One drawback of this approach 
is that multimodal distributions are ignored because we only focus on the first mode. Figure 15.a 
shows that the highest consumption is on the weekend.  
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a. The highest energy consumption is on 

the weekend 

 
b. Circular transformation  

Figure 15: Mode of the weekday with the highest energy consumption  

Peak consumption-hour of the day  
The peak consumption-hour of the day determines the most frequently occurring hour of the day with 
the highest consumption. We counted when the highest consumption for the day occurs in each hour. 
This information is subsequently utilized by two additional features: the median and the mode hour 
of the day with the highest consumption.  
 
Median and mode hour of the day with max consumption 
The peak consumption hour for each day is represented by the median or the mode value and each 
load profile is summarized by a singular value. Figure 16.a illustrates that the according to the median, 
the most frequent instance falls approximately between 3-4 pm; while according to the mode the 
maximum consumption is between 3-11 pm (Figure 17.a).  
 

 
a. The highest energy consumption is 

in the afternoon 

 
14. Circular transformation 

Figure 16 Median hour of the day with highest energy consumption 
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a. Highest energy 

consumption is in the 
evening 

 
b. Circular transformation 

Figure 17 Mode hour of the day with highest energy consumption 

Month with maximum consumption 
The month with max consumption displays the month with the highest consumption for a specific load 
profile. In Figure 18.a, it's evident that January has the highest consumption. Additionally, due to the 
cooling demand, the summer months also contribute significantly to energy consumption. 
 

 
a. Months with highest energy consumption 

 
b. Circular transformation 

Figure 18 Months with the highest energy consumption 

 

Number of slope changes per month 
A "slope change" refers to the moment when the consumption pattern shifts from a decline to an 
upward trend or vice versa. If the monthly consumption pattern exhibits several local peaks, 
determining the month with the greatest consumption becomes less elucidating. As a result, we 
analyze the count of monthly slope transitions. In Figure 19, it is evident that most consumers 
experience four or six slope changes in their monthly consumption pattern over the course of a year. 

 
Figure 19 Slope change over a year  
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2.2.4 Workday vs holidays 

We used a logarithmic transformation on the ratio variables to reduce the non-linear scaling impact 
resulting from the ratio transformations. This approach aids in achieving a more balanced and 
interpretable scale for the data.  
 
Mean and median logarithmic ratio of holidays versus workdays 
First, we determined the mean/median consumption for both working days and holidays (holidays 
include Saturday and Sunday as well as bank holidays). Then, we divided the mean/median 
consumption of the workdays by the mean/median consumption of the non-working days. Lastly, we 
apply a logarithmic transformation to the ratio variables.  
 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = log �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑤𝑤𝑜𝑜𝑜𝑜𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤

�       MedianHW = log(𝑚𝑚𝑚𝑚𝑤𝑤𝑜𝑜𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤
𝑚𝑚𝑚𝑚𝑤𝑤𝑜𝑜𝑚𝑚𝑚𝑚 ℎ𝑤𝑤𝑜𝑜𝑜𝑜𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤

) 

 
 
By examining consumption disparities between workdays and holidays, we uncovered recurring 
trends, such as users who stay at home during weekends or behaviors exclusively utilized during 
holidays. We lastly, compared the mean and the median results to check if there is any substantial 
difference, as shown in Figure 20.  
 

 
Figure 20: Comparison of the logaritmic ratio between the mean and the median of holidays vs workdays. 

 

The logarithmic ratio between summer and winter consumption 
The comparison of loads between the summer and winter seasons informs on heating systems and 
occupancy behavior. The ratio is calculated by dividing the energy consumption in summer by the 
energy consumption in winter (Figure 21). The ratio is logarithmic to prevent distortion in the 
distances between observations caused by ratio values below one being confined to the [0,1] interval.  
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Figure 21: Logarithmic ratio of the energy consumption between summer and winter  

The logarithmic ratio between workday and non-workday consumption 
To catch behavior linked to holidays, we calculated the ratio of the workday to non-workdays 
consumption by dividing the mean workday consumption by the mean non-workday consumption. 
This ratio is then taken as logarithmic to prevent distortions.  

 
Figure 22: Logarithmic ratio of the energy consumption between workday and non-workdays 
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2.3 Features selection 

After extracting new features, a comprehensive analysis was conducted to further explore the 
relationships and identify the most influential variables. We first performed a correlation analysis by 
dropping those features with a Pearson linear correlation above 0.95 (Figure 22).  

 

 
Figure 23: Features with a Pearson correlation above 0,95 

Our goal is to test various clustering methods with variations in their hyperparameters, different 
numbers of clusters (between 2 and 10), and all combinations between 2 and 10 variables (columns) 
from the feature dataset generated from hourly consumption data. We first tested the combination 
of subsets of 2 -10 elements, but this produced an excessive number of combinations (around 28 
million feature combinations) making this approach unfeasible. So, we grouped the features 
according to the type of information that each one summarizes:  
 

1. Average consumption (mean hourly/daily consumption and median hourly/daily 
consumption) 

2. Shape of the consumption, such as measures of dispersion and skewness (CVp hourly/monthly 
consumption and hourly/daily Pearson 2nd skew) 

3. Day of the week with the highest energy consumption for each customer (mean weekly 
maximum consumption, median/mode day of the week maximum consumption and sinus and 
cosine of the median/mode of the days with maximum consumption) 

4. Hour with the highest energy consumption (mean hour count per day, median/mode 
maximum consumption, sinus and cosine of the hours with the highest consumption)  

5. Months with the highest energy consumption (month with the highest consumption and sinus 
and cosine of the month with the highest consumption) 

6. Holiday consumption (mean and median logarithmic ration between workdays and holidays, 
logarithmic ratio between workdays and weekends) 

7. Remaining variables associated with diverse content (load increase/decrease, proportion of 
periods without consumption, changes in the slope of the series of average monthly 
consumptions, and the ratio of consumption between winter and summer) 

 

We then defined all subsets of features that can be formed by taking at most one variable from each 
of the first groups (1-6) and any number of variables from the last group of features (group 7). This 
prevents us from simultaneously including more than one variable or pair of variables associated with 
the same type of information. Lastly, we added a condition on the number of features in each subset 
to be considered, which must be between 2 and 10. This reduces the number of feature combinations 
to be tested with different clustering strategies from around 28 million to just over 100 000. 
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3 Conclusion 
In this chapter, we overviewed the workflow of feature engineering to extract information on short 
term and long-term behavioral trends from unlabeled residential load profiles. Based on these 
features grouping the profiles should be facilitated.  
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4 Building stock data on different levels of aggregation  
In this chapter we describe methods for handling building stock data on higher aggregated levels like 
neighborhoods, districts or cities, especially needed for local and regional energy planning or the 
operation of local energy communities or positive energy neighborhoods. By liaising with WP3 (input 
data) and WP511 (requirements from analytics/services), below aspects will be addressed in this task. 

Firstly, we will develop the methodology to comprise data on the composition of different building 
archetypes and resulting energy consumption patterns. Secondly, we will explore how aggregated 
data can be split up and distributed back to the individual building level (e.g., energy consumption for 
the various end uses derived from consumption data aggregated on street or sector level). The latter 
can serve as input and/or calibration for the methods corresponding to indicator group 1 and 2. Then, 
we will also investigate the data requirement for assessing the spatial allocation of installed HVAC 
systems and methods how to deal with related data gaps. In this respect, the activity may require 
methods to combine (sometimes incomplete) data on building or street segment level with 
aggregated data on the same indicator but on a higher, aggregated level (e.g., combining hourly 
metering data for some specific buildings in a street with yearly energy consumptions on sector level). 
Herewith, special attention will be given on how to avoid data loss while ensuring that the methods 
and generated output remain GDPR compliant. 

In this section, a literature review is primarily conducted to have an overview of the aforementioned 
aspects, then we selectively propose several methods for generating synthetic building stock datasets 
according to the provided preliminary datasets in WP3 and the service requirements in WP5. 

4.1 Literature review 

4.1.1 Building stock modelling and data 

Building Stock Energy Modelling (BSEM) and Urban Building Energy Modelling (UBEM) are the terms 
often used for the building stock analysis in the reviewed literature12. Different methods and tools 
have been developed for building stock with the aim to provide various insights into system 
performance13, building stock retrofitting potential14 15, energy driven planning16, forecasting17 and 
urban decision making18 by evaluating factors such as short or long term energy use and demand, 

 
11 In WP5 different analytical tools and applications are developed to process, analyse and create additional 
insights from building information data. 
12 Hong T, Chen Y, Luo X, Luo N, Lee SH. Ten questions on urban building energy modeling. Building and Environment 
2020;168:106508, doi:10.1016/j.buildenv.2019.106508. 
13 Allegrini J, Orehounig K, Mavromatidis G, Ruesch F, Dorer V, Evins R. A review of modelling approaches and tools for the 
simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews 2015;52:1391–404, 
14 Hong T, Piette MA, Chen Y, Lee SH, Taylor-Lange SC, Zhang R, Sun K, Price P. Commercial Building Energy Saver: An energy 
retrofit analysis toolkit. Applied Energy 2015;159:298–309, doi:10.1016/j.apenergy.2015.09.002. 
15 Kristensen MH. Urban building energy modelling for retrofit analysis under uncertainty, Aarhus Universiet; 2018. 
16 Ferrari S, Zagarella F, Caputo P, Bonomolo M. Assessment of tools for urban energy planning. Energy 2019;176:544–51, 
doi:10.1016/j.energy.2019.04.054.  
17 Hu Y, Cheng X, Wang S, Chen J, Zhao T, Dai E. Times series forecasting for urban building energy consumption based on 
graph convolutional network. Applied Energy 2022;307:118231, doi:10.1016/j.apenergy.2021.118231. 
18 Kavgic M, Mavrogianni A, Mumovic D, Summerfield A, Stevanovic Z, Djurovic-Petrovic M. A review of bottom-up building 
stock models for energy consumption in the residential sector. Building and Environment 2010;45:1683–97, 
doi:10.1016/j.buildenv.2010.01.021. 
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short term demand response, GHG emissions, potential renewable energy generation and storage etc. 
These approaches are generally classified to bottom-up and top-down approaches.19 

The top-down approach provides insights for forecasting and long-term planning and policy evaluation 
using macro-economic and statistical data 20. Top-down models rely on macro level information, 
historical data and statistical energy use, socio-economic factors and energy prices to estimate energy 
consumption or carbon dioxide emissions for long term purposes such as high-level building energy 
policy evaluation, while bottom-up models start from detailed individual building level data and scale 
all the way up to street, neighborhood, district, city, regional and national building stock level21. Top -
down and bottom-up approaches are further subdivided into constituent sub-categories by different 
researchers. For instance, Ali et al22 further divide bottom-up approaches into three main sub-groups: 
physics-based, data driven and reduced ordered methods. In IEA Annex 7023, Langevin et al.24 propose 
a multi-layer quadrant scheme that classifies modeling techniques by their design (top-down or 
bottom-up) and degree of model transparency (black-box or white-box). In general, bottom-up 
approaches become more and more popular due to the emerging data at building level. Specifically, 
a hybrid approach in-between top-down and bottom-up can be favorable in terms of applicability. 
Among bottom-up approaches, physics-based methods have the advantage that they enable the 
assessment and quantification of the combined effect of several technologies on the building energy 
demand, and do not require detailed historical energy consumption and socio-economic factors25. 

Input data quality have a crucial impact on the performance of analysis such as UBEM or BSEM. Hence, 
data enhancement techniques play an essential role in improving the raw data source quality and 
forming a reliable synthetic dataset that can sufficiently represent the targeted building stock and be 
further used in the dedicated building stock analysis. In principle, to generate such synthetic building 
stock datasets, data sources are clustered to three groups by Nägeli et al26: data on building stock 
structure and spatial distribution (e.g. geo-referenced data on number of buildings), data on building 
stock characteristics (e.g. u-value of building components) and data on building usage (e.g. energy 
consumption, number of occupants). Depending on specific research topic and data availability, 
different methods can be applied to generate the required synthetic datasets. These are reviewed and 
selectively presented in the following sections. 

 
19 Swan LG, Ugursal VI. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. 
Renewable and Sustainable Energy Reviews 2009;13:1819–35, doi:10.1016/j.rser.2008.09.033. 
20 Reinhart CF, Cerezo Davila C. Urban building energy modeling – A review of a nascent field. Building and Environment 
2016;97:196–202, doi:10.1016/j.buildenv.2015.12.001. 
21 Li W, Zhou Y, Cetin K, Eom J, Wang Y, Chen G, Zhang X. Modeling urban building energy use: A review of modeling 
approaches and procedures. Energy 2017;141:2445–57, doi:10.1016/j.energy.2017.11.071. 
22 Ali U, Shamsi MH, Hoare C, Mangina E, O’Donnell J. Review of urban building energy modeling (UBEM) approaches, 
methods and tools using qualitative and quantitative analysis. Energy and Buildings 2021;246:111073, 
doi:10.1016/j.enbuild.2021.111073.  
23 https://energyepidemiology.org/ 
24 J. Langevin, J.L. Reyna, S. Ebrahimigharehbaghi, N. Sandberg, P. Fennell, C. Nägeli, J. Laverge, M. Delghust, É. Mata, M. Van 
Hove, J. Webster, F. Federico, M. Jakob, C. Camarasa, Developing a common approach for classifying building stock energy 
models, Renewable and Sustainable Energy Reviews, Volume 133, 2020, 110276, ISSN 1364-0321, 
https://doi.org/10.1016/j.rser.2020.110276. 
25 https://doi.org/10.1016/j.energy.2017.11.071 
26 Nägeli, C.; Thuvander, L.; Wallbaum, H.; Cachia, R.; Stortecky, S.; Hainoun, A. Methodologies for Synthetic Spatial Building 
Stock Modelling: Data-Availability-Adapted Approaches for the Spatial Analysis of Building Stock Energy Demand. Energies 
2022, 15, 6738. https://doi.org/10.3390/en15186738 

https://doi.org/10.1016/j.rser.2020.110276
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4.1.2 Archetype modelling and resulted energy consumption patterns 

Based on the general overview described in Section 3.1, this section focuses on bottom-up, physical-
based techniques, given its flexibility with regards to data availability. This type of urban energy 
modeling requires the definition of model data inputs regarding the modeled buildings’ geometry, 
construction assemblies, HVAC systems and usage patterns, as well as climate conditions. However, 
such detailed data collection efforts become impractical for larger urban areas and the computational 
efforts become often too excessive in case one has to setup an individual building model for each 
building in large urban areas. Therefore, different approaches have been developed to reduce the 
modeling and simulation efforts, of which most can be classified as one of three main approaches: 

1. Distribution approach27 
This approach determines the end-use energy consumption from regional or national distributions 
of appliance ownership and use. Although this method relies on national figures of appliance 
penetration and may adopt historic energy consumption, they are classified as bottom-up due 
their end-use disaggregation. 

2. Sample approach26 
In this technique, actual sample building data is used as the model input information, after which 
the total building stock energy consumption can be estimated by applying appropriate weights to 
the results. However, this method requires an extensive database to represent the entire 
modelled building stock in case of large or highly diverse regions. 

3. Archetype-based approach 
This widely-used technique classifies the building stock according to several building 
characteristics, after which the energy consumption estimates of modeled archetypes are scaled 
up to be representative of modeled housing stock.  

Among these approaches, we believe that archetype modelling is the most generally applicable 
method because of its flexible data requirements, has a large potential for improving UBEM 28, and 
has widely been accepted by both academia and practitioners. Therefore, we focus on archetype 
modeling in the rest of this section.  

In archetype modeling, abstraction of the modeled building stock is made into “building archetypes”, 
i.e. sets of either representative samples or artificially created buildings that characterize subsets of 
buildings with similar properties29. The number of buildings in the modeled area that correspond to 
each building archetype is then estimated based on national census statistics or available data of the 
archetype indicators for each individual building. Each building archetype is then modelled using a 
chosen simulation engine to estimate its energy consumption, after which these estimates are further 
scaled up to represent the regional or national building stock through aggregation30. 

Dahlström et al.28 describes that setting up a UBEM framework based on archetypes comprises five 
distinct main processes which follow each other chronologically: (1) data acquisition and processing, 
(2) building stock segmentation and archetype development, (3) simulation (modelling components), 
(4) model calibration, and (5) model application.  

 
27 https://www.sciencedirect.com/science/article/pii/S0301421507003291 
28 https://doi.org/10.1016/j.enbuild.2022.112099 
29 https://doi.org/10.1016/j.energy.2019.04.197 
30 https://www.sciencedirect.com/science/article/pii/S1364032108001949 
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In this section, we focus on the archetype development, which comprises three major steps, 
namely, segmentation, characterization and calibration, and quantification 28 31 32: 

1. classification or segmentation: buildings are grouped according to one or more 
indicators, 

2. characterization: each archetype has to be characterized by a complete set of 
thermal and building physics characteristics, including construction materials, 
usage patterns, and building systems, and  
calibration: calibration and validation of uncertain archetype parameters, 

3. quantification: determine the number of buildings belonging to each building 
archetype. 

4.1.2.1 Archetype segmentation/ classification 

In this first step, buildings are grouped according to one or more indicators or criteria, which need to 
be 1) correlated to the energy demand of the building, and 2) available for all buildings. 

As described by Dahlström et al.28, studies involving archetype classification have adopted different 
methodologies depending on the aim of the study. First, considering the input data that is used for 
the classification process, Dahlström et al.28 divided studies based on whether or not they have utilized 
any variant of an EPC database. Herewith, EPCs can be considered as a highly value data source that 
can eliminate some of the data gathering or reliability issues compared to studies using other data 
sources. 

Second, segmentation schemes to split the building stock can either be defined by the modeler in a 
manual (deterministic), semi-automatic (statistic) or fully automatized (data-driven) way. For the 
latter, the development of machine learning techniques (both supervised and unsupervised) allows 
for more automated statistic segmentation, i.e. clustering, where the modeler's main input is to define 
the building (energy) similarity metrics to be used, and not the feature splits themselves 33 34 35.  

Typical indicators involve socio-economic36 37 38(type of building usage, income level), spatial (climate 
zone, location) 39, structural 40  38 (e.g. age, floor area, envelope form, number of floors), energy 
installation41 (e.g. heating source, ventilation system, status of refurbishment) or performance (e.g. 
energy use intensity, total energy, peak power) features42 43.   

The indicators most often used to classify buildings into archetypes are programmatic use (e.g. 
residential, office, retail, etc.), floor area, shape typology and age of the construction. 

 
31 https://www.sciencedirect.com/science/article/pii/S0378778819306553 
32 https://www.sciencedirect.com/science/article/pii/S0360132314001991 
33 https://doi.org/10.1016/j.enbuild.2019.109364 
34 https://doi.org/10.1016/j.enbuild.2012.03.033 
35 https://doi.org/10.1007/978-981-19-1280-1_14 
36 https://doi.org/10.1007/s12053-017-9609-1 
37 https://doi.org/10.1016/j.egypro.2017.03.018 
38 https://doi.org/10.1016/j.enbuild.2021.111175 
39 https://doi.org/10.1016/j.enbuild.2017.08.029 
40 https://doi.org/10.1016/j.enpol.2014.01.027 
41 https://doi.org/10.1016/j.enbuild.2018.08.032 
42 https://doi.org/10.1016/j.egypro.2017.03.244 
43 https://doi.org/10.1016/j.energy.2018.05.190 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/segmentation
https://www.sciencedirect.com/topics/engineering/machine-learning-technique
https://www.sciencedirect.com/topics/engineering/ventilation-system
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The number of archetypes varies significantly between different studies. Monteiro et al.44 concluded 
that the modelling accuracy increases with the number of archetypes, although an increased number 
of archetypes increase the data requirements and increases the computational efforts. Therefore, a 
compromise needs to be made and the adopted number of archetypes depends on the diversity of 
the modeled building stock, the building energy metric of interest, the data availability for 
segmentation and characterization and the requirements for accuracy and computational efforts.  

4.1.2.2 Archetype characterization  

The second step in the archetype development involves the characterization of the identified building 
categories for all relevant energy simulation parameters. Besides the building geometry, these include 
all non-geometric building and occupant factors which influence energy demand, including envelope 
construction details, HVAC system properties, occupancy schedules, internal loads, etc. The exact set 
of parameters to be defined depends on the UBEM simulation tool, the thermal modelling approach 
(steady state versus dynamic) and the model zoning simplification (single zone vs multi zone). 

In general, archetype characterization can either be done deterministic 38 44, i.e. a single value assigned 
to each parameter and used for every building, or probabilistic by defining parameters as distributions 
39 45. Especially for parameters characterized by high uncertainties, a probabilistic characterization 
allows to have a more reliable estimate of the resulting energy demand. These typically involve 
parameters related to occupant behavior and preferences, but also any parameter that is often not 
found in audit, survey, or GIS data46. The latter can include, for example, infiltration air exchange rates, 
which are difficult to measure, thermal losses from HVAC distribution systems, or the amount of 
unconditioned floor area in the building.  

The adopted values for the energy simulation parameters can be derived from building data, expert 
knowledge, literature and building surveys. Absent data or data of insufficient granularity can lead to 
oversimplified and biased archetype characterization, in which case various calibration methods 
should be applied (see next section). 

4.1.2.3 Calibration 

Validation data and calibration data are crucial for UBEM, as validation data can be employed to 
evaluate the performance of UBEM, and calibration data can be used as a benchmark to adjust the 
input parameters in UBEM. Calibration methodologies for building energy models are being used 
more and more in the literature, of which the probabilistic calibration approaches, e.g. approaches 
based on Bayesian inference, have become increasingly popular in recent years47. 

 
44 https://doi.org/10.1016/j.egypro.2017.03.244 
45 https://doi.org/10.1080/10789669.2011.582920 
46 https://doi.org/10.1016/j.enbuild.2016.10.050 
47 https://doi.org/10.1080/19401493.2012.723750, 
https://doi.org/10.1016/j.enbuild.2016.04.025, 
https://doi.org/10.1016/j.buildenv.2014.12.016, 
https://doi.org/10.1007/s12273-016-0291-6, 
https://doi.org/10.1016/j.enbuild.2017.08.069, 
https://doi.org/10.1016/j.enbuild.2016.10.050, 
https://doi.org/10.1016/j.enbuild.2017.08.029, 
http://www.ibpsa.org/proceedings/BS2015/p2435.pdf 
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Optimization and Bayesian calibration are both approaches to choosing vectors from the input 
parameter space that result in the lowest calibration error and involve the minimization of an 
objective function (i.e., calibration error) by changing the model’s input parameters. 

However, primarily limitations in data access, time and computational power made it difficult to apply 
these methods for urban building energy models. Since measured energy data for individual buildings 
is rarely available in UBEM, often only a single value (a district’s annual energy consumption) can be 
used for model validation. For this purpose, Bayesian calibration is recently being used 48 49 to address 
uncertainty of individual building parameters by characterizing each parameter undergoing calibration 
as a probability distribution instead of a single value, and subsequently using measured data points to 
update these to posterior distributions. Herewith, the combination of UBEM’s with surrogate 
regression models enables to reduce the often high simulation times 50.  

4.1.2.4 Archetype quantification 

The quantification step determines the distribution of archetype buildings in order to be 
representative of the building stock, i.e. the simulation results of each archetype are weighted by the 
number of buildings of the modeled building stock corresponding to the archetype.  

To quantify the number of building corresponding to each archetype and compute their total floor 
area, studies on larger scale typically use national statistics. For studies on smaller scale (e.g. 
neighborhood level), more detailed data with regard to the archetype indicators could be collected 
for the modeled building stock, allowing to compute the number and summed floor area for each 
archetype based on the more detailed data. 

4.1.3 (dis)aggregations 

The process of disaggregation of energy data known at an aggregated level, e.g. city or national level, 
to individual building level has been studied extensively in the literature. Moreover, it is closely linked 
with synthetic building stock energy modelling (SBSEM)51, which allows to model spatially distributed 
synthetic building stocks. In this review, we first give present promising methodologies for SBSEM that 
are useful for building energy data disaggregation. Subsequently, we discuss two other types of 
techniques used in the literature that allow to predict the individual energy consumption of buildings 
based on data on an aggregated level, and as such downscale the city or neighborhood energy use to 
the level of buildings. 

4.1.3.1 Synthetic building stock energy modelling 

Synthetic building stock energy modelling (SBSEM) refers to the field of generating disaggregated data 
of individual buildings in building stocks based on aggregate data. Nägeli et al.26 used two approaches 
of using SBSEM, the so-called sample-based and sample-free SBSEM. The sample-based approach is 
based on the Iterative Proportional Updating (IPU) approach52 and relies on the use of a sample 
dataset of individual buildings. Using a standard Iterative Proportional Fitting (IPF) procedure52, they 
spatially distribute a sample set of building records to match an aggregated dataset describing the 
spatial distribution of the building stock. The sample-free approach reconstructs the synthetic building 

 
48 https://doi.org/10.1080/19401493.2020.1729862 
49 https://doi.org/10.1080/19401493.2012.723750 
50 https://doi.org/10.1080/19401493.2018.1457722 
51 https://doi.org/10.1016/j.enbuild.2018.05.055 
52 Ye, Xin & Konduri, Karthik & Pendyala, Ram & Sana, Bhargava & Waddell, Paul. (2009). Methodology to match 
distributions of both household and person attributes in generation of synthetic populations. 
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stock based on aggregate data describing the structure and spatial distribution of the building stock. 
Herewith, the synthetic building stock is initialized one by one by iteratively generating buildings and 
assigning different building characteristics based on the probabilities and constraints in the 
composition of the building stock of the modelled area. In both approaches, the synthetically created 
building stock is then enriched with additional attributes needed for energy modelling by 
stochastically assigning attributes based on distributions or assigning data based on archetype data. 

4.1.3.2 Energy data disaggregation 

As explained earlier, bottom-up statistical techniques are used to derive relationships or correlations 
between key input parameters and output parameters such as whole building or end use energy 
consumption53. Mastrucci et al.54 and Howard et al.55 used (multiple) linear regression models to 
downscale measured natural gas and electricity consumption from the aggregated zip code level to 
single dwellings, and apportioned these consumptions to the different end-uses. 

Zhang et al.56 used a combination of statistical matching and various machine learning techniques 
(linear regression, gradient boosting regression, and random forest regression, Support Vector 
Machine, …) to enrich a sample dataset with energy data, and subsequently use the IPU algorithm to 
generate a synthetic population of households for the entire metropolitan region. Similarly, Robinson 
et al.57 employed multiple machine learning methods to estimate the commercial building energy 
consumption in diverse metropolitan areas in the United States. 

4.1.4 Spatial allocation of HVAC systems in UBEM  

This part of the literature review investigates the spatial allocation of HVAC systems in an urban energy 
system through data analysis techniques. We first mention how the HVAC information can be devised 
in a building dataset. Then, we explain how the lack of minimum requirements can be solved according 
to the literature. We hereby distinguish between spatial allocation of HVAC and thermal load 
prediction of buildings. Although estimation of heating and cooling loads based on open data has been 
widely explored, few studies in the literature have focused on the spatial allocation of HVAC systems 
using open data. 

HVAC systems in UBEM can be defined based on their metadata description (e.g. fuel type, type of 
system, emission system), although usually, only the system's efficiency is sufficient to investigate 
economic and environmental indicators under different scenarios. The minimum required information 
about the installed HVAC depends on the use-case. The level of detail about the HVAC for detailed and 
case specific energy simulations is not like the large-scale, such as building stock, energy simulations. 
The simplest technique is to overcome the lack of required data is to estimate the details of the 
installed HVAC for each building in the dataset based on its archetype and/or the energy consumption 
patterns (if available). For example, a newly built house can be assumed to have a mechanical 
ventilation system. With similar reasoning a significantly higher gas consumption for a building, street 
or district in winter may indicate the dominance of gas boilers. However, a variety of methods have 
been used to deal with lack of data about the HVAC and to reach different goals as exemplified below: 

 
53 https://doi.org/10.1016/j.rser.2020.110276 
54 https://doi.org/10.1016/j.enbuild.2014.02.032 
55 https://doi.org/10.1016/j.enbuild.2011.10.061 
56 https://doi.org/10.1016/j.energy.2018.04.161 
57 https://doi.org/10.1016/j.apenergy.2017.09.060 
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a. Financial analysis for energy system design for retrofit planning or energy system design using an 
integrate tool (e.g. CityBES 58). This tool takes the HVAC allocation as input and adds it to its 
original dataset. This is the most common approach for spatial allocation of HVACs in UBEM. 

b. Energy storage feasibility study e.g., Chambers et al. 59. 
In this case, the study does not explore the existing HVAC but the feasibility of a district 
heating system with storage capacity using a projection for upcoming HVAC installations. In 
this case, the HVAC type for each building is imposed by the modeler to be district heating.  

c. Energy flexibility investigation, e.g FlexiGIS open source tool 60.  
In this type of studies, a tool is developed that is using electricity and gas consumption time 
series as inputs and do not simulate HVAC. As such, spatial allocation of HVAC is done 
indirectly via the energy consumption data. 

d. Carbon emission reduction potential 61.  
In this example, a comprehensive scenario analysis was carried out. The modeling included 
white-, black-, and grey-box approaches depending on the part of the system and it requires 
a significant amount of data to build up the model. HVAC spatial allocation is done outside the 
energy simulation model in a separate optimization model, of which the output (selected 
HVAC) serves as input for the energy model. The selected HVAC is modeled with white-box 
models including a model of undefloor heating, air conditioning etc. One of the targets is to 
devise the clusters of buildings that could operate with similar supply temperature for the 
emission system. Then, the feasibility of a district heating/cooling system can be compared to 
that of discretized HVACs. 

e. Fault detection (e.g. Buffa et al. 62).  
In the framework of the H2020 project RELaTED 63, two tools have been developed for 
automatic fault detection in DH substations based on ML algorithms: DH doctor and DH 
Autotune 64. The first one exploits clustering, and it is based on daily averaged readings. Both 
methods rely on data-driven approaches to identify HVAC operation and hence can be used 
to identify HVAC type. Herewith, HVAC identification can be considered a pre-processing step 

 
58 Chen, Y., Hong, T., & Piette, M. A. (2017). Automatic generation and simulation of urban building energy 
models based on city datasets for city-scale building retrofit analysis. Applied Energy, 205, 323–335. 
https://doi.org/10.1016/J.APENERGY.2017.07.128  

59 Chambers, J., Zuberi, S., Jibran, M., Narula, K., & Patel, M. K. (2020). Spatiotemporal analysis of industrial 
excess heat supply for district heat networks in Switzerland. Energy, 192, 116705. 
https://doi.org/10.1016/J.ENERGY.2019.116705 

60 Alhamwi, A., Medjroubi, W., Vogt, T., & Agert, C. (2019). Development of a GIS-based platform for the 
allocation and optimisation of distributed storage in urban energy systems. Applied Energy, 251, 113360. 
https://doi.org/10.1016/J.APENERGY.2019.113360 

61 Fonseca, J. A., & Schlueter, A. (2015). Integrated model for characterization of spatiotemporal building 
energy consumption patterns in neighborhoods and city districts. Applied Energy, 142, 247–265. 
https://doi.org/10.1016/j.apenergy.2014.12.068  

62 Buffa, S., Fouladfar, M. H., Franchini, G., Lozano Gabarre, I., & Andrés Chicote, M. (2021). Advanced Control 
and Fault Detection Strategies for District Heating and Cooling Systems—A Review. Applied Sciences, 11(1), 
455. https://doi.org/10.3390/app11010455. 

63 http://www.relatedproject.eu 

64 http://www.relatedproject.eu/wp-content/uploads/2019/10/RELaTED_D2_4_Energy_  
Flexibility_and_DH_Control_V4.0.pdf 
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for input data. Using smart meter data for example, one can first identify the installed HVAC 
and afterwards use the metered data for additional analysis, calibration and/or validation. 

Integrated urban building energy models, e.g. CityBES 65 and TEASER 66, rely on multiple layers of data 
to make an integrated dataset for integrated models and simulations. These models have their specific 
requirements for input dataset including HVAC spatial allocation. Each building is specified with a tag 
and contains a variety of input data including its installed HVAC. As such, spatial allocation of HVAC is 
a pre-processing step to these integrated models. If the installed HVAC for a building is not known, 
other methods must be deployed to define the HVAC for a building. There are methodologies for pre-
processing the building data to define its installed HVAC. For example, Yu et al. 67 developed an 
algorithm for online operational signatures of HVAC systems and examine their energy profiles, which 
could also be used to label the installed HVAC in a building. However, existing methods focus on the 
analysis of individual buildings, thus upscaling the applications and implementation of these methods 
is needed to be useful for UBEM.  

Another related scientific trend is modeling electricity grid using open source data, which are often 
data-driven. Many recent scientific modeling projects like GENESYS 68 , SciGRID 69 , open_eGo 70 
openMod 71 and Open Power System Data 72 and OpenGridMap focus on open source software and/or 
open grid data. Moreover, several grid simulation software packages exists, such as PyPSA 73 or 
osmTGmod 74. To our knowledge, such models have not been employed for UBEM yet, while they may 
provide interesting opportunities. For instance, the data can be analyzed in order to find out the 
pattern in electricity use and allocate the installed HVAC to a specific location. Chen et al. 75 use smart 
meter data analysis to estimate the penetration of heat pumps in a city. They developed a 
classification method to characterize air conditioning penetration patterns with spatiotemporal 
resolution. Miller et al. 76 provide an overview of unsupervised data mining techniques to classify the 
HVAC operational indicators. Such techniques can be used to classify the installed HVAC in a building. 

 
65 Agbonaye, O., Keatley, P., Huang, Y., Ademulegun, O. O., & Hewitt, N. (2021). Mapping demand flexibility: A 
spatio-temporal assessment of flexibility needs, opportunities and response potential. Applied Energy, 295, 
117015. https://doi.org/10.1016/J.APENERGY.2021.117015. 
66 Remmen, P., Lauster, M., Mans, M., Fuchs, M., Osterhage, T., & Müller, D. (2018). TEASER: an open tool for 
urban energy modelling of building stocks. Journal of Building Performance Simulation, 11(1), 84–98. 
https://doi.org/10.1080/19401493.2017.1283539 
67 Yu, X., Ergan, S., & Dedemen, G. (2019). A data-driven approach to extract operational signatures of HVAC 
systems and analyze impact on electricity consumption. Applied Energy, 253, 113497. 
https://doi.org/10.1016/J.APENERGY.2019.113497 
68 https://www.vde-verlag.de/proceedings-de/453550041.html 
69 http://scigrid.de 
70 https://www.next-energy.de 
71 https://github.com/rwl/PYPOWER 
72 https://open-power-system-data.org 
73 http://http://pypsa.org 
74 https://github.com/wupperinst/osmTGmod 
75 Chen, M., Sanders, K. T., & Ban-Weiss, G. A. (2019). A new method utilizing smart meter data for identifying 
the existence of air conditioning in residential homes. Environmental Research Letters, 14(9), 094004. 
https://doi.org/10.1088/1748-9326/ab35a8 

76 Miller, C., Nagy, Z., & Schlueter, A. (2018). A review of unsupervised statistical learning and visual analytics 
techniques applied to performance analysis of non-residential buildings. Renewable and Sustainable Energy 
Reviews, 81, 1365–1377. https://doi.org/10.1016/J.RSER.2017.05.124 
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To conclude, there is not a single, optimal technique for spatial allocation of HVACs in a UBEM and the 
optimal strategy depends on the data availability. However, three main approaches can be listed: 
• In some cases, the input building dataset already includes information (e.g. EPC 

certificate) about the installed HVAC systems.  
• Classification techniques can be used to identify the installed HVAC for buildings for 

spatial allocation of HVACs in urban scale as input to the model data if smart meter 
data for gas and electricity are accessible.  

• Correlation between input data can also be used as a pre-processing step that 
facilitates data enhancement for spatial allocation of HVAC. For example, known or 
estimated building physical parameters, insulation level, annual gas and electricity 
consumptions, etc. can give a good indication about the installed HVAC. 

4.2 Proposed methods based on available datasets 

According to the literature review in section 3.1, UBEM necessitates certain input data. As a result, a 
pre-processing step is required to enhance the quantity and quality of the input data so that they meet 
the model requirements. The data enhancement method, on the other hand, is heavily dependent on 
the characteristics of the original input dataset. In this section, we first mention data enhancement 
procedures related to variety of datasets. Then, the datasets used in this work package are described, 
after which the best data enhancement method for each dataset is provided. 

Based on current analysis of the datasets available in WP3 and the preliminary requirements of 
services/tools in WP5, following methods are proposed: 

• Data-driven archetypes are defined based on commonly available data sources 
(e.g. geometrical data and construction year) in EPC database, linking with the 
consumption profiles (both annual and high frequency profiles when data is 
available). This method enables a reliable calibration of the urban energy model. 
Elaborate datasets which contain building parameters and monitored data such as 
energy use and indoor temperature are useful in this method. Individual buildings 
of the elaborate dataset are found among the statistically defined archetypes. 
Then, the discrepancies between model outcomes and monitored data are studied. 
For instance, shares of modelling errors and archetype misclassification are studied 
in this analysis.  

• Building characteristics in the database (e.g. u-value, HVAC systems) can be 
enriched based on construction year or other variables that define the archetypes 
(sampling method). EPC databases can help in deriving correlations between 
variety of building parameters. Monitored energy use or energy bills can be useful 
in this step only if they can be related to building attributes.  

• Detailed energy use profiles can be derived from pre-processing of metadata. The 
aggregated energy use of a building may not suffice for planning and decision for 
an district/urban energy system. Detailed energy profiles can help in deriving the 
energy breakdown of the building, hence helping in decision making and energy 
planning. Energy breakdown describes the energy use of a building disaggregated 
for a variety of services in the building. Energy bills cannot solely suffice in this 
method. Thus, pre-processing the dataset can help show where and how the energy 
is consumed in a building. Then, the energy planer can propose tailored measures 
to improve energy performance of each building in a district. 
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• Disaggregation of national/regional data using top-down approach to breakdown 
national/city energy balance values (or other stats) to building (archetype) level. 
First, the data from a national or regional level database are analysed. 
Disaggregation of the data is then performed based on additional data from other 
resources. For example, the distribution of the building parameters in the region of 
the reported original database is studied. Archetypes are then defined such that 
the entire region is covered (can be only data-driven). Buildings of the original 
dataset are characterised based on the archetypes. Spatial data are added to the 
database if available. As such, the national/regional dataset can be disaggregated 
using synthetic datasets. 

• National/regional EPC datasets are used to allocate HVAC systems to individuals, 
together with more detailed data when available. Installed HVACs in buildings are 
classified based on multiple parameters such as year of installation, energy (gas 
and electricity) consumption, etc.    

• HVAC systems and design settings are identified based on metered data on the 
individual level. Smart meter data can reveal if a heat pump or gas boiler is devised 
as production unit. Year of construction, renovation year, geometrical data etc. can 
help define the installed HVAC. This entails deploying probabilistic methods for 
judgment based on historical data of the region of the study. 

A preliminary overview on the description of the available datasets and required data enhancement 
method are presented below based on the private/public data sources provided by seven partners in 
WP3 and according to the provided literature review. 

15. ENERCOOP: annual electric load profiles of more than 1000 buildings in Spain 
As the time series are anonymized, data-driven models can be trained with this dataset. The 
models can produce synthetic time series on individual building level or on district level. 
Although this data cannot be directly related to building parameters, they can be used for 
data calibration.  

16. IVE: EPC database in Valencian region, Spain. 
This dataset provides spatial data on the individual building level with the estimated annual 
CO2 emission and energy demand for each building, and thus distribution approach is relevant 
to this dataset.  

17. Synvasion: monitoring data of 2 buildings located in Hannover, Germany 
This dataset includes elaborate data which will be of use for model calibration. 

18. Würth: monitoring data of 12 retail shops located in Italy 
Given that the data is for shops, this dataset can be used for archetype quantification using 
data-driven approaches. The correlation between weather data and the monitored data can 
also enhance the dataset.  

19. Veolia: 2 buildings with monitored data (energy consumption - space heating, 
DHW, and temperature, 15 minute resolution) and building characteristics info 
(floor area, number of floors, and insulation) 
This dataset includes elaborate data which will be of use for model calibration. 

20. Köhler and Meinzer: energy (electricity bills) of single flats (anonymized) and survey 
data of another 68 buildings. Archetype classification can be performed using this 
dataset. Moreover, calibration of the models can be conducted based on the 
energy bills in this dataset.  
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21. VITO: annual gas and electricity consumption profiles of 100 Flemish households; 
Street level consumption data per energy (electricity/gas), injection/purchase and 
per main municipality at street level; Building geometrical data in Flanders; EPB 
(Energy Performance and Indoor Climate, new built or renovation) database in 
Flanders. 

This dataset requires a multi-step combined method for data enhancement. This includes 
disaggregation of data using probabilistic methods, characterization of buildings for archetype 
modelling, sampling methods for calibration of urban building energy modelling.  

In addition, we also include EPC datasets of different countries (where available) as an additional data 
source for the building stock analysis. A preliminary exploration of open source EPC data in the EU 
(UK, NL, FR, BE-3 regions, IT-Lombardia region)77 was conducted to seek the synergies, so that we can 
further select the most generic data enhancement method accordingly. 

Besides the available datasets, past expertise and knowledge will influence the choice for the 
proposed methodology(ies). For instance, VITO has previously developed the Urban Energy Path 
Finder (UEP) 78, which is a decision support tool for future scenario analysis for energy planning 
purposes. It provides a holistic energy solution by calculating energy, CO2 savings, and financial 
conditions for renovation scenarios and energy technology measures at building, district and city level. 
These scenarios include a mix of technological measures such as district heating/cooling networks, 
building renovation measures and decentralized renewable energy production technologies.  

The workflow of UEP can be subdivided into three main parts:  
a.  Characterisation of the existing situation of the buildings in the modeled district. 
b. The evaluation of renovation measures on individual building level. 
c. The evaluation of district heating potential for the district. 

The focus of this task is closely linked with the first step in UEP, which will be elaborated more in detail 
below. 

UEP first gathers all available information on individual building, including the building geometry, 
construction year, building function, installed HVAC, etc. Next, primary characteristics and input data 
such as current actual energy consumption data are where needed transferred, processed, re-
calculated from higher aggregation levels towards the building level by means of spatial allocation 
algorithms. 

Next, UEP employs a bottom-up, archetype-based approach in which buildings are classified based on 
their function, type (apartment, terraced, semi-detached, detached) and construction year period. 
The archetype characterisation was done probabilistic and derived from the national EPC database. 
Herewith, for each archetype, each energy-related building parameter is described by a probability 
distribution. To determine an input value needed for the actual building energy simulations, a single 
value is sampled from these distributions for each parameter and each building. Since two buildings 
of the same archetype will be characterized by different sampled values, this methodology takes into 
account the natural spread of the modeled building stock. 

Eventually, we will investigate the suitable methodologies that could be implemented to the project 
datasets and explore the possibilities to generalize these methodologies to other open source or 
private datasets. 

 
77 Arcipowska, A., Anagnostopoulos, F., Mariottini, F., Kunkel, S., Rapf, O., Atanasiu, B.,& Dumitru, M. (2014). A 
Mapping of National Approaches Energy Performance Certificates across the EU BPIE Review and Editing Team. 
78 https://www.energyville.be/en/research/urban-energy-pathfinder 
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5 Link to other work packages 
The methodologies described in this deliverable are relevant for the following tasks in this WP. Each 
of these tasks gets data collected in WP3 as input together with additional open source datasets. 
Further, in each task a methodology and application are developed that can then be further used in 
WP5 and integrated into the MODERATE Platform. In the following paragraph we shortly describe the 
data flows in between these three work packages at our current understanding. As the project 
continues the exact linkages especially between WP4 and WP5 will be further specified and might 
change.  

Figure 29 visualizes the interlinkage of WP4 with WP3 and WP5. Task 4.279 aims to generate synthetic 
data of energy consumption in buildings (electricity for lighting and appliances, space heating, 
domestic hot water and air conditioning) on a seasonal or yearly basis. Therefore, the input data 
potentially includes population data, building archetypes of a certain region and historical energy 
usage or costs. The output format of Task 4.2 (purple) are single values with metadata description. 
This data will be further used in WP5 in the Subtasks 5.1.2 (Energy system optimization and Fault 
Detection and Forecasting), 5.1.3 (M&V for Building energy assessment and the Benchmarking tool) 
and 5.1.4 (EPC Harmonization).  

 

Figure 24: Linkage between Task 4.2, WP3 and WP5. 

Figure 30 shows the interlinkage of Task 4.380 with WP3 and WP5. The goal of Task 4.3 is to generate 
synthetic load profiles for electricity and heating (if available). To do so the input from WP3 to Task 4.3 
is focused on such profiles. We expect that most profiles which will be processed on the MODERATE 
platform when finished, will not contain sensible information. However, one key aspect of this Task is 
to ensure that datasets with sensible information will be processed in a way that the sensible 
information will not be included in the dataset anymore and at the same time the value of the data is 

 
79 Create synthetic data of specific energy consumption values on building level. 
80 Create synthetic data of smart meter load profiles on building level. 
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not compromised significantly. For training and developing a model which will generate the synthetic 
data, we expect also input data with some meta data information such as the type of building, number 
of residents, information on appliances or EPC data. The synthetic data comprises of either yearly 
hourly arrays typical daily, weekly or seasonal arrays. These profiles can then be further used by WP5 
in subtask 5.1.2 in Fault Detection and Forecasting, Energy System Optimization, in subtask 5.1.3 in 
M&V for Building Energy Assessment and in subtask 5.1.4 EPC Harmonization. 

 
Figure 25: Linkage between Task 4.3, WP3 and WP5 

Figure 31 represents the interlinkage of Task 4.481 with WP3 and WP5. Aggregation of data on single 
building level to regional and disaggregation of data on regional to single building level is the main 
goal of Task 4.4. In addition, a special focus lies in allocating Heating, Ventilation, and Air Conditioning 
(HVAC) systems in a given area. Therefore, Task 4.4 relies on both, bottom up data which can consist 
of EPC data for example and top down data which mostly is provided in the form of statistical data. 
Various methodologies are used in Task 4.4 to enrich a given database on building characteristics, 
create data driven archetypes and consumption profiles and break down the energy usage of given 
buildings (Chapter 3). The results are mainly relevant for Subtask 5.1.2 ECM Application and Subtask 
5.1.3 EPC Harmonization and the geo clustering tool.  

 
81 Aims at aggregating and disagregating building information as well as HVAC identification. 
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Figure 26: Linkage between Task 4.4, WP3 and WP5. 
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